A MicroRNA cluster at 14q32 drives aggressive lung adenocarcinoma.

نویسندگان

  • Ernest Nadal
  • Jinjie Zhong
  • Jules Lin
  • Rishindra M Reddy
  • Nithya Ramnath
  • Mark B Orringer
  • Andrew C Chang
  • David G Beer
  • Guoan Chen
چکیده

PURPOSE To determine whether different subtypes of lung adenocarcinoma (AC) have distinct microRNA (miRNA) expression profiles, and to identify miRNAs associated with aggressive subgroups of resected lung AC. EXPERIMENTAL DESIGN miRNA expression profile analysis was performed in 91 resected lung AC and 10 matched nonmalignant lung tissues using a PCR-based array. An independent cohort of 60 lung ACs was used for validating by quantitative PCR the top 3 prognostic miRNAs. Gene-expression data from 51 miRNA profiled tumors was used for determining transcript-specific miRNA correlations and gene-enrichment pathway analysis. RESULTS Unsupervised hierarchical clustering of 356 miRNAs identified 3 major clusters of lung AC correlated with stage (P = 0.023), tumor differentiation (P < 0.003), and IASLC histologic subtype of lung AC (P < 0.005). Patients classified in cluster 3 had worse survival as compared with the other clusters. Eleven of 22 miRNAs associated with poor survival were encoded in a large miRNA cluster at 14q32. The top 3 prognostic 14q32 miRNAs (miR-411, miR-370, and miR-376a) were validated in an independent cohort of 60 lung AC. A significant association with cell migration and cell adhesion was found by integrating gene-expression data with miR-411, miR-370, and miR-376a expression. miR-411 knockdown significantly reduced cell migration in lung AC cell lines and this miRNA was overexpressed in tumors from patients who relapsed systemically. CONCLUSIONS Different morphologic subtypes of lung AC have distinct miRNA expression profiles, and 3 miRNAs encoded at 14q32 (miR-411, miR-370, and miR-376a) were associated with poor survival after lung AC resection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Cancer Biology A MicroRNA Cluster at 14q32 Drives Aggressive Lung Adenocarcinoma

Purpose:Todeterminewhether different subtypes of lung adenocarcinoma (AC)havedistinctmicroRNA (miRNA) expression profiles, and to identify miRNAs associated with aggressive subgroups of resected

متن کامل

Cancer Biology and Signal Transduction MiR-134/487b/655 Cluster Regulates TGF-b–Induced Epithelial–Mesenchymal Transition and Drug Resistance to Gefitinib by Targeting MAGI2 in Lung Adenocarcinoma Cells

Epithelial–mesenchymal transition (EMT) has recently been recognized as a key element of cell invasion, migration, metastasis, and drug resistance in several types of cancer, including non–small cell lung cancer (NSCLC). Our aim was to clarify microRNA (miRNA)-related mechanisms underlying EMT followed by acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TK...

متن کامل

MiR-134/487b/655 Cluster Regulates TGF-b–Induced Epithelial–Mesenchymal Transition and Drug Resistance to Gefitinib by Targeting MAGI2 in Lung Adenocarcinoma Cells

Epithelial–mesenchymal transition (EMT) has recently been recognized as a key element of cell invasion, migration, metastasis, and drug resistance in several types of cancer, including non–small cell lung cancer (NSCLC). Our aim was to clarify microRNA (miRNA)-related mechanisms underlying EMT followed by acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TK...

متن کامل

MiR-134/487b/655 cluster regulates TGF-β-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells.

Epithelial-mesenchymal transition (EMT) has recently been recognized as a key element of cell invasion, migration, metastasis, and drug resistance in several types of cancer, including non-small cell lung cancer (NSCLC). Our aim was to clarify microRNA (miRNA)-related mechanisms underlying EMT followed by acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TK...

متن کامل

Inhibition of Mef2a Enhances Neovascularization via Post-transcriptional Regulation of 14q32 MicroRNAs miR-329 and miR-494

Improving the efficacy of neovascularization is a promising strategy to restore perfusion of ischemic tissues in patients with peripheral arterial disease. The 14q32 microRNA cluster is highly involved in neovascularization. The Mef2a transcription factor has been shown to induce transcription of the microRNAs within this cluster. We inhibited expression of Mef2a using gene-silencing oligonucle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 20 12  شماره 

صفحات  -

تاریخ انتشار 2014